Generate a MICE Rel
object, with predict
and simulate
methods, for multiMSE.
Currently implements intra-stock dynamics via density-dependent processes.
Arguments
- type
String to indicate the type of stock interaction.
"DDM"
for density-dependent natural mortality.- stock
The index position of the stock in the MOM.
- CV
Coefficient of variation of the predicted value for
simulate
. Used to pass values to the operating model.- ...
Additional arguments depending on
type
. See details below.- x
For
print.Rel
, aRel
class object frommake_Rel
.- object
A
Rel
class object frommake_Rel
.- newdata
A data frame to provide values of predictor variables with which to calculate the response variable.
- nsim
The number of simulations.
- seed
Integer to specify the seed for the random number generator.
Density-dependent M ("DDM")
Natural mortality (M) is a linear function of stock depletion in terms to total biomass (B) in year y (Forrest et al. 2018): $$M_y = M_0 + (M_1 + M_0) (1 - B_y/B_0)$$ with a constraint that \(M_y = M_0\) if \(B_y > B_0\)
Provide the following arguments:
M0
: Natural mortality as B approaches B0. Vector[nsim]
M1
: Natural mortality as B approaches zero. Vector[nsim]
Optional
B0
: Unfished biomass. Calculated from stock-recruitalpha
andbeta
and unfished biomass per recruit at M = M0. Vector[nsim]
References
Forrest, R., Holt, K., and Kronlund, A. 2018. Performance of alternative harvest control rules for two Pacific groundfish stocks with uncertain natural mortality: Bias, robustness and trade-offs. Fisheries Research 206: 259–286. doi:10.1016/j.fishres.2018.04.007
Examples
# Depensatory natural mortality
Rel <- makeRel(type = "DDM", M0 = 0.8, M1 = 0.2, CV = 0.1)
# Predict M when B/B0 = 0.1
pred <- predict(Rel, newdata = data.frame(B_1 = 0.1, B0_1 = 1))
# Simulate values of M with CV = 0.1
Rel$fitted.values <- pred
simulate(Rel, nsim = 10, seed = 1)
#> sim_1 sim_2 sim_3 sim_4 sim_5 sim_6 sim_7
#> 1 0.2430378 0.2634926 0.2380192 0.303335 0.2673545 0.2383794 0.2715994
#> sim_8 sim_9 sim_10
#> 1 0.2784825 0.2740037 0.2509475
# Add Rel to MOM
MOM <- makeMOM(testOM)
MOM@Rel <- list(Rel)