Package index
-
OM-class
- Class
'OM'
-
OMdoc()
- Generate OM Documentation Report
-
testOM
- OM class objects
-
plot(<pars>)
plot(<Stock>)
plot(<Fleet>)
plot(<Obs>)
plot(<Imp>)
plot(<Hist>)
plot(<OM>)
- Plot Operating Model Object
Import
Convert stock assessment output, i.e., stock, fleet, and some observation error parameters, into an operating model
-
ASAP2OM()
ASAP2Data()
- Convert ASAP 3 assessments into an operating model
-
Assess2MOM()
- Reads bootstrap estimates from a stock assessment model into a multi-fleet operating model.
-
Assess2OM()
VPA2OM()
- Reads bootstrap estimates from a stock assessment model (including VPA) into an operating model.
Assess2OM
is identical toVPA2OM
.
-
Awatea2OM()
- Reads MCMC estimates from Awatea (Paul Starr) processed r file structure into an operating model
-
iSCAM2OM()
iSCAM2Data()
- Reads MPD or MCMC estimates and data from iSCAM file structure into an operating model
-
SS2MOM()
plot_SS2MOM()
SS2OM()
SSMOM2OM()
plot_SS2OM()
MOM_agg_fleets()
- Import Stock Synthesis to MOM (2-sex multi-fleet) or OM (single-sex, single-fleet)
-
WHAM2OM()
- Takes a fitted SAM model and samples historical population and fishing dynamics from the MLE fit and variance-covariance matrix.
-
ChooseEffort()
ChooseM()
ChooseSelect()
- Manually map parameters for the historical period of operating model
-
LH2OM()
predictLH()
- Predict missing life-history parameters
-
ML2D()
- Depletion and F estimation from mean length of catches
-
SketchFun()
- Manually map the historical relative fishing effort trajectory.
-
Turing()
TuringMOM()
- Turing Test
-
XL2Fleet()
- Import Fleet Object from Excel file
-
XL2OM()
- Load OM from Excel file
-
XL2Stock()
- Import Stock Object from Excel file
-
makemov()
- Calculates movement matrices from user inputs for fraction in each area (fracs) and probability of staying in areas (prob)
-
Albacore
Blue_shark
Bluefin_tuna
Bluefin_tuna_WAtl
Butterfish
Herring
Mackerel
Porgy
Rockfish
Snapper
Sole
Toothfish
- Stock class objects
-
Stock-class
- Class
'Stock'
-
DecE_Dom
DecE_HDom
DecE_NDom
FlatE_Dom
FlatE_HDom
FlatE_NDom
Generic_DecE
Generic_FlatE
Generic_Fleet
Generic_IncE
IncE_HDom
IncE_NDom
Low_Effort_Non_Target
Target_All_Fish
Targeting_Small_Fish
- Fleet class objects
-
Fleet-class
- Class
'Fleet'
-
Generic_Obs
Imprecise_Biased
Imprecise_Unbiased
Perfect_Info
Precise_Biased
Precise_Unbiased
- Obs class objects
-
Obs-class
- Class
'Obs'
-
Overages
Perfect_Imp
- Imp class objects
-
Imp-class
- Class
'Imp'
Hist
Object generated from the historical reconstruction of the system dynamics (output of runMSE(Hist = TRUE)
)
-
Hist-class
- Class
'Hist'
Data objects
Includes functions to import and export Data objects, data frames describing slots, manipulate Data objects, and generate examples.
-
Atlantic_mackerel
China_rockfish
Cobia
Example_datafile
Gulf_blue_tilefish
ourReefFish
Red_snapper
Simulation_1
- Data class objects
-
Data-class
- Class
'Data'
-
Data2csv()
- Converts a Data object into a .csv data file
-
DataInit()
- Initialize Data Input Files
-
DataSlots
- DataSlots
-
Data_xl()
- Read in Data object from Excel spreadsheet
-
Lag_Data()
- Lag the time-series slots in a
Data
object by a specified number of time-steps
-
Report()
- Generate a Data Report
-
SS2Data()
- Reads data Stock Synthesis file structure into a Data object using package r4ss
-
SS2DataMOM()
- Reads data Stock Synthesis file structure into a nested Data object analogous with multiMSE
-
XL2Data()
- Import a Data object from Excel file
-
SimulatedData
- SimulatedData Data
-
boxplot(<Data>)
- Boxplot of TAC recommendations
-
plot(<Data>)
- Plot Data object
-
plotOFL()
- A generic OFL plot for NOAA use
-
summary(<Data>)
- Summary of Data object
-
select_MP()
- Select DataList for an MP from
MMSE@PPD
-
Fease()
- MP feasibility diagnostic
-
Input()
- Function to run a set of input control methods
-
MPtype()
- Management Procedure Type
-
RealFease()
- MP feasibility diagnostic using real data
-
Required()
- What management procedures need what data
-
Sense()
- Sensitivity analysis
-
TAC()
- Calculate TAC recommendations for more than one MP
-
TACfilter()
- TAC Filter
-
tune_MP()
- Tune MP
-
Uses()
- Find the Management Procedures that use a particular data slot
-
runInMP()
- Runs input control MPs on a Data object.
-
runMP()
- Run a Management Procedure
Reference management procedures
Management procedures reflecting idealized management, e.g., perfect knowledge of stock productivity, no fishing scenario, etc.
-
FMSYref()
FMSYref50()
FMSYref75()
NFref()
curEref()
- Reference management procedures
-
Emp()
- A flexible empirical management procedure.
-
Rec-class
- Class
'Rec'
-
runCOSEWIC()
COSEWIC_Pplot()
COSEWIC_Dplot()
COSEWIC_Blow()
COSEWIC_Hplot()
COSEWIC_report()
COSEWIC_tab()
COSEWIC_tab_formatted()
- COSEWIC MSE run using the correct MPs and projected time horizon
-
Simulate()
Project()
runMSE()
- Run a Management Strategy Evaluation
-
setup()
- Setup parallel processing
-
PMobj-class
- An object for storing data for analysis using data-limited methods
-
MSE-class
- Class
'MSE'
-
Converge()
- Check Convergence
-
Dom()
- Determine dominate MPs
-
VOI()
- Calculate Value Of Information
-
VOI2()
- Calculate Value Of Information 2
-
summary(<MSE>)
- Summary of MSE object
-
Cplot()
- Plot the median biomass and yield relative to last historical year
-
Kplot()
- KOBE plot: a projection by projection plot of F/FMSY and B/BMSY
-
Pplot()
- A projection by projection plot of F/FMSY and B/BMSY
-
Pplot2()
- A projection by projection plot of F/FMSY, B/BMSY, B/B0, and yield
-
PWhisker()
- Performance Whisker Plot
-
Splot()
- Standard MSE projection plot
-
SSBrefplot()
- Plot Spawning stock biomass and reference points for both historical and projected period
-
TradePlot()
Tplot()
Tplot2()
Tplot3()
NOAA_plot2()
- Generic Trade-Plot Function
-
VOIplot()
- Yet another Value of Information Plot
-
plot(<MSE>)
- Plot MSE object
-
wormplot()
- Biomass wormplot
-
DFO_bar()
- Department of Fisheries and Oceans stock status bar plot
-
DFO_hist()
- Department of Fisheries and Oceans historical plot
-
DFO_plot()
- Department of Fisheries and Oceans trade-off plot
-
DFO_plot2()
- Department of Fisheries and Oceans default plot 2
-
DFO_quant()
- Department of Fisheries and Oceans biomass quantile plot
-
DFO_proj()
- Department of Fisheries and Oceans projection plot
-
DFO_report()
- Create a standard DFO MSE report
-
DFO_spider()
- DFO performance spider plot (top three MPs)
-
DFO_tab()
- Create a standard DFO performance table
-
DFO_tab_formatted()
- A formatted version of the standard DFO performance plot, color coded by thresholds
-
Cos_thresh_tab()
- Current default thresholds for COSEWIC satisficing
-
Thresh_tab()
- Current default thresholds for DFO satisficing
-
NOAA_plot()
- National Oceanographic and Atmospheric Administration default plot 1
multiMSE
Multi-population (two-sex or multi-stock), multi-fleet operating models (class MOM) and corresponding MSE object (class MMSE)
-
Albacore_TwoFleet
- MOM class objects
-
MOM-class
- Class
'MOM'
-
MMSE-class
- Class
'MMSE'
-
makeMOM()
- Utility for making multi-OMs
-
makeRel()
print(<Rel>)
predict(<Rel>)
simulate(<Rel>)
- MICE relationships for multi-OM
-
SimulateMOM()
ProjectMOM()
multiMSE()
- Run a multi-fleet multi-stock Management Strategy Evaluation
-
multidebug()
- A basic comparison of runMSE output (MSE) and multiMSE (MMSE)
-
plot(<MMSE>)
- Standard plot for an object of class MMSE (multi MSE)
-
plot(<MOM>,<missing>)
- Standard plot for an object of class MOM
-
plotRel()
- Plot a relationship between stocks
-
plotmulti()
- A basic SSB plot for debugging runMSE output
-
summary(<MMSE>)
- Summary of MMSE object
-
avail()
- What objects of this class are available
-
optCPU()
- Determine optimal number of cpus
-
tinyErr()
- Remove observation, implementation, and process error
-
writeCSV()
- Internal function to write CSVs for objects
-
CheckOM()
- Check OM object is complete
-
Replace()
- Replace an existing Stock, Fleet, Obs, or Imp object
-
MSEextra()
- Load more data from MSEextra package
-
SubCpars()
- Subset the cpars slot in an operating model
-
SubOM()
- Subset a Stock, Fleet, Obs, or Imp object from an OM object
-
validcpars()
- Valid custom parameters (cpars)
-
CALsimp()
- Simplifies the CAL slot of data object
-
CheckMPs()
- Check that specified MPs are valid and will run on MSEtool::SimulatedData
-
replic8()
- Enlarge (replicate) a DLM data object to create an additional dimension for simulation / sensitivity testing
-
MPtype()
- Management Procedure Type
-
CombineMMP()
- Create a blank MP recommendations object (class Rec) of the right dimensions
-
doHCR()
- Hockey Stick Harvest control rule that modifies TAC.
-
doIfreq()
- Create indices that are sampled at various frequencies
-
doRec()
- Calculate a management recommendation given constraints
-
smoothy()
- General purpose polynomial smoother
-
Sub()
- Subset MSE object by management procedure (MP) or simulation.
-
checkMSE()
addMPs()
joinMSE()
joinHist()
updateMSE()
- Utility functions for MSE objects
-
joinData()
- Join Data objects present in a list
-
MSYCalcs()
- Internal function to calculate MSY Reference Points
-
applyMP()
- Apply Management Procedures to an object of class Data
-
applyMMP()
- Apply multi Management Procedures (class MMP) to a hierarchical list of Data class objects
-
calcRefYield()
- Calculate Reference Yield
-
cparscheck()
- Internal function for checking that the
OM@cpars
is formatted correctly
-
dnormal()
- Double-normal selectivity curve
-
getmov2()
- Optimization function to find a movement model that matches user specified movement characteristics modified for Rcpp.
-
getsel()
- Calculate selectivity curve
-
hconv()
R0conv()
SRalphaconv()
SRbetaconv()
- Stock recruit parameterization
-
movestockCPP()
- Apply the movement model to the stock for one time-step
-
simCAA()
- Simulate Catch-at-Age Data
-
simCAL()
- Simulate Catch-at-Length Data
-
simmov()
plot_mov()
- Calculates movement matrices from user inputs
-
expandHerm()
checkHerm()
subsetHerm()
- Internal Herm functions
-
multiData()
- Combine data among fleets
-
multiDataS()
- Combine data among stocks
-
join_plots()
- Plot several plots with a shared legend
-
makeTransparent()
- Make colors transparent
-
plotFun()
- Print out plotting functions
-
plotquant()
- A fairly tidy time-series quantile plot
-
quantile_plot()
- A quantile plot